顶级彩票

今天是
今日新发布通知公告4条 | 上传规范

【百家大讲堂】第219期:差分微带贴片天线

发布日期:2019-06-25

【百家大讲堂】第219期:差分微带贴片天线 
讲座题目:差分微带贴片天线
报  告 人:张跃平
时  间:2019年7月4日上午10:00-11:30
地    点:中关村校区信息科学实验楼205会议室
主办单位:研究生院、信息学院
报名方式:登录顶级彩票微信企业号---第二课堂---课程报名中选择“【百家大讲堂】第219期:差分微带贴片天线”

【主讲人简介】


 张跃平,新加坡南洋理工大学电气与电子工程学院教授,IEEE天线与传播学会(IEEE AP-S)特聘讲师,IEEE AP-S论文评审委员会委员,IEEE Fellow。
张教授,IEEE天线与传播学报(2010-2016)副主编,IEEE新加坡MTT/AP联合分会主席(2012)。张教授2012年被上海交通大学聘为千人学者。2005年获香港大学颁授William孟访问学者奖学金,2014年获香港大学委任为访问教授。
张教授已发表及接受多篇论文,包括《IEEE学报》特邀发表的两篇及《IEEE天线与传播学报》特邀发表的一篇。他可能是第一个也是唯一一个在IEEE天线与传播杂志等英文学术期刊上发表过历史性文章的中国无线电科学家。他拥有7项美国专利。2000年7月18日至20日,在英国伯恩茅斯举行的第二届IEEE/IET通信系统、网络和数字信号处理国际研讨会上,他获得了最佳论文奖2007年3月21日至23日,英国剑桥,第三届IEEE天线技术国际研讨会最佳论文奖,并于2017年5月24日至26日在中国香港举行的第十届IEEE毫米波全球研讨会上获得最佳论文奖。2012年,他获得了著名的IEEE AP-S Sergei A. Schelkunoff论文奖。
张教授在毫米波应用方面,为封装天线(AiP)技术的发展作出了开创性的重要贡献。他目前的研究兴趣包括晶片上天线(AoC)技术的发展和无线晶片区域网路(WCAN)的太赫兹晶片规模传播通道的特性。
ZHANG Yueping is a full Professor with the School of Electrical and Electronic Engineering at Nanyang Technological University, Singapore, a Distinguished Lecturer of the IEEE Antennas and Propagation Society (IEEE AP-S), a Member of the IEEE AP-S Paper Award Committee, and a Fellow of IEEE. 
Prof. ZHANG was a Member of the IEEE AP-S Field Award Committee (2015-2017), an Associate Editor of the IEEE Transactions on Antennas and Propagation (2010-2016), and the Chair of the IEEE Singapore MTT/AP joint Chapter (2012). Prof. ZHANG was selected by the Recruitment Program of Global Experts of China as a Qianren Scholar at Shanghai Jiao Tong University (2012). He was awarded a William Mong Visiting Fellowship (2005) and appointed as a Visiting Professor (2014) by the University of Hong Kong. 
Prof. ZHANG has published and accepted numerous papers, including two invited and one regular papers in the Proceedings of the IEEE and one invited paper in the IEEE Transactions on Antennas and Propagation. He is probably the first and only Chinese radio scientist who has managed to publish a historical article in an English learned journal such as IEEE Antennas and Propagation Magazine. He holds 7 US patents. He received the Best Paper Award from the 2nd IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing, July 18–20, 2000, Bournemouth, U.K., the Best Paper Prize from the 3rd IEEE International Workshop on Antenna Technology, March 21–23, 2007, Cambridge, U.K., and the Best Paper Award from the 10th IEEE Global Symposium on Millimetre-Waves, May 24–26, 2017, Hong Kong, China. He received the prestigious IEEE AP-S Sergei A. Schelkunoff Prize Paper Award in 2012.
Prof. ZHANG has made pioneering and significant contributions to the development of the antenna-in-package (AiP) technology that has been widely adopted by chipmakers for millimetre-wave applications. His current research interests include the development of antenna-on-chip (AoC) technology and characterization of chip-scale propagation channels at terahertz for wireless chip area network (WCAN).
 
【讲座信息】
赫兹最早用于发现无线电波的天线是偶极子天线和环路天线,他们是微分。马可尼将地面概念引入天线,实现了单端单极子天线的无线传输。与差分天线相比,单端天线尺寸较小,因此在天线设计中以单端天线为主。与单端电路相比,微分电路具有更高的线性度和更低的偏置,使其不受电源变化、温度变化和基片噪声的影响。因此,微分电路在集成电路设计中占据主导地位。微分电路需要差分天线。这在高度集成的片上系统和包内系统解决方案中尤其重要,因为系统地平面可能比一个自由空间波长小得多。差动天线与差动电路完美地结合(匹配)。不需要有损耗的平衡/不平衡转换电路。从而提高了接收机的噪声性能和发射机的功率效率。
在这次演讲中,我提出了差分微带天线,重点是比较他们与单端对应。首先,对已知的单端微带天线空腔模型进行了扩展,分析了差分微带天线的输入阻抗和辐射特性。然后研究了确定单端微带天线补片尺寸和馈电点位置的设计公式,以设计差分微带天线。结果表明,利用该公式仍然可以设计出所需谐振频率的贴片长度,但该公式计算出的贴片宽度通常需要加宽,以保证使用探头馈电的基模激励。电分离是连接贴片宽度、探头馈电位置和基模激励的条件,是微带差分天线设计中一个独特的新概念。接下来,我将讨论差分微带天线的小型化,并讨论一些最新的研究成果。最后,总结全文并提出建议。
In this talk, I present differential microstrip antennas with an emphasis on the comparison of them with single-ended counterparts. First, I extend the well-known cavity model for the single-ended microstrip antennas to analyse the input impedance and radiation characteristics of differential microstrip antennas. Then I examine the design formulas to determine the patch dimensions and the location of the feed point for single-ended microstrip antennas to design differential microstrip antennas. It is shown that the patch length can still be designed using the formulas for the required resonant frequency but the patch width calculated by the formula usually needs to be widen to ensure the excitation of the fundamental mode using the probe feeds. The condition that links the patch width, the locations of the probe feeds, and the excitation of the fundamental mode is the electrical separation, which is a new and unique concept specifically conceived for the design of differential microstrip antennas. Next, I turn to the miniaturization of differential microstrip antennas and discuss some latest achievements. Finally, I summarize the talk and provide recommendations.